Concours > Concours #2

Description

$\begingroup$Après le premier concours de Mathraining, voici un concours uniquement de théorie des nombres ! Il se base sur le même principe : six problèmes en tout, deux par week-end, les problèmes aux numéros impairs étant plus faciles que les problèmes aux numéros pairs. Ce concours est de niveau moyen pour pouvoir attirer le plus de monde possible.$\endgroup$

Organisateurs du concours : Elias Caeiro, 4Daniel Cortild et Théodore Fougereux.

Problème #1

Solutions acceptées du vendredi 1 février 2019 à 12h00 au samedi 2 février 2019 à 16h00 (heures belges).
Énoncé
$\begingroup$Soit $p \ge 3$ un nombre premier et soient $\{a_1,a_2,\ldots,a_p\}$ et $\{b_1,b_2,\ldots,b_p\}$ des permutations de $\{0,1,\dotso,p-1\}$. Montrer que parmi les $p$ nombres $a_1 b_1, a_2 b_2, \dotso, a_p b_p$ il en existe (au moins) deux donnant le même reste après division par $p$.$\endgroup$
Statistiques
Tenté par 37 personnes
Scores parfaits : 23

Problème #2

Solutions acceptées du samedi 2 février 2019 à 16h00 au dimanche 3 février 2019 à 23h59 (heures belges).
Énoncé
$\begingroup$Montrer qu'il existe une infinité d'entiers strictement positifs qui ne peuvent pas être écrits sous la forme $$a^3+b^5+c^7+d^9+e^{11}$$ où $a,b,c,d,e$ sont des entiers strictement positifs.$\endgroup$
Statistiques
Tenté par 17 personnes
Scores parfaits : 14
Origine du problème : Belarusian Mathematical Olympiad 2002, Problème 5

Problème #3

Solutions acceptées du vendredi 8 février 2019 à 12h00 au samedi 9 février 2019 à 16h00 (heures belges).
Énoncé
$\begingroup$Montrer que pour chaque entier strictement positif $k$ il existe une progression arithmétique $$\frac{p_1}{q_1},\frac{p_2}{q_2},\ldots , \frac{p_k}{q_k}$$ de nombres rationnels, où $p_i$ et $q_i$ sont des entiers strictement positifs premiers entre eux pour tout $i \in \{1,2,\ldots,k\}$, telle que les $2k$ nombres $p_1,p_2,\ldots, p_k,q_1,q_2,\ldots, q_k$ soient tous distincts deux à deux.$\endgroup$
Statistiques
Tenté par 16 personnes
Scores parfaits : 16
Origine du problème : Asian Pacific Mathematical Olympiad 2009, Problème 4

Problème #4

Solutions acceptées du samedi 9 février 2019 à 16h00 au dimanche 10 février 2019 à 23h59 (heures belges).
Énoncé
$\begingroup$Trouver toutes les fonctions $f \colon \mathbb N_0\to \mathbb N_0$ telles que
$$af(a)+bf(b)+2ab$$ soit un carré parfait pour tous $a,b\in\mathbb N_0$.$\endgroup$
Statistiques
Tenté par 8 personnes
Scores parfaits : 5
Origine du problème : Iran Team Selection Test 2011, Jour 4, Problème 3

Problème #5

Solutions acceptées du vendredi 15 février 2019 à 12h00 au samedi 16 février 2019 à 16h00 (heures belges).
Énoncé
$\begingroup$Montrer qu'il existe un ensemble infini d'entiers positifs, tous de la forme $2^n-3$ avec $n$ entier positif, dont tous les éléments sont deux à deux premiers entre eux.$\endgroup$
Statistiques
Tenté par 10 personnes
Scores parfaits : 9
Origine du problème : International Mathematical Olympiad 1971, Problème 3

Problème #6

Solutions acceptées du samedi 16 février 2019 à 16h00 au dimanche 17 février 2019 à 23h59 (heures belges).
Énoncé
$\begingroup$Trouver tous les couples $(p,q)$ de nombres premiers tels que $3p^{q-1}+1$ divise $11^p+17^p$.$\endgroup$
Statistiques
Tenté par 3 personnes
Scores parfaits : 2
Origine du problème : Balkan Mathematical Olympiad 2018, Problème 4