$\begingroup$L'inégalité de Hölder est l'inégalité suivante.
Inégalité de Hölder
Soient $p, q > 1$ des nombres réels tels que $\frac{1}{p} + \frac{1}{q} = 1$. Pour tous $a_1, \ldots, a_n \in \mathbb{R}^+$ et $b_1, \ldots, b_n \in \mathbb{R}^+$, on a
$$a_1b_1 + \ldots + a_n b_n \leq \left(a_1^p + \ldots + a_n^p\right)^\frac{1}{p} \cdot \left(b_1^q + \ldots + b_n^q\right)^\frac{1}{q},$$ ce qui s'écrit, à l'aide des signes somme,
$$\sum_{i=1}^n a_ib_i \leq \left(\sum_{i=1}^na_i^p\right)^{\frac{1}{p}}\cdot\left(\sum_{i=1}^nb_i^q\right)^{\frac{1}{q}}.$$ De plus, l'égalité a lieu si et seulement si $a_i = 0$ pour tout $i \in \{1, \ldots, n\}$ ou s'il existe $\lambda \in \mathbb{R}$ tel que $b_i^q = \lambda a_i^p$ pour tout $i \in \{1, \ldots, n\}$.
Pour $p = q = 2$ (qui conviennent puisque $\frac{1}{2}+\frac{1}{2} = 1$), on retrouve exactement l'inégalité de Cauchy-Schwarz (avec des variables positives).
Démonstration
Remarquons tout d'abord que l'inégalité de Hölder est homogène (que ce soit par rapport aux $a_i$ comme par rapport aux $b_i$). Cela nous permet donc d'effectuer certaines suppositions sur les variables. Nous allons en fait supposer que $$\sum_{i=1}^n a_i^p = 1 = \sum_{i=1}^n b_i^q.$$ Nous ne perdons ainsi aucune généralité puisque, si nous démontrons l'inégalité de Hölder sous cette condition, elle sera également vraie lorsque $\sum_{i=1}^n a_i^p = k$ et $\sum_{i=1}^n b_i^q = l$ pour certains $k, l \neq 0$. En effet, il suffit pour s'en convaincre d'effectuer le changement de variables $a'_i = \frac{a_i}{\sqrt[p]{k}}$ et $b'_i = \frac{b_i}{\sqrt[q]{l}}$. Les cas où $k$ ou $l$ est nul sont quant à eux triviaux puisqu'on a alors tous les $a_i$ ou tous les $b_i$ qui sont nuls.
On utilise à présent l'inégalité entre la moyenne géométrique et la moyenne arithmétique pondérées. Comme $\frac{1}{p}+\frac{1}{q} = 1$, celle-ci nous apprend que
$$u^{\frac{1}{p}} v^{\frac{1}{q}} \leq \frac{1}{p} u + \frac{1}{q} v$$ pour tous $u, v \in \mathbb{R}^+$. En prenant $u = a_i^p$ et $v = b_i^q$, on en déduit que
$$a_ib_i \leq \frac{a_i^p}{p} + \frac{b_i^q}{q},$$ et ce pour tout $i \in \{1, 2, \ldots, n\}$. Il suffit alors d'effectuer la somme sur $i$ pour obtenir
$$\sum_{i=1}^n a_ib_i \leq \frac{\sum_{i=1}^n a_i^p}{p} + \frac{\sum_{i=1}^n b_i^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$ Cela termine la preuve, puisque $$1 = \left(\sum_{i=1}^na_i^p\right)^{\frac{1}{p}}\cdot\left(\sum_{i=1}^nb_i^q\right)^{\frac{1}{q}}.$$ Enfin, l'égalité a lieu (dans notre cas restreint où $\sum_{i=1}^n a_i^p = 1 = \sum_{i=1}^n b_i^q$) quand $a_i^p = b_i^q$ pour tout $i$. On peut facilement vérifier que, en passant au cas général, l'égalité a en fait lieu lorsque les vecteurs $(a_1^p, \ldots, a_n^p)$ et $(b_1^q, \ldots, b_n^q)$ sont proportionnels, comme annoncé.
On peut en fait aussi écrire une version de l'inégalité de Hölder pour $0 < p < 1$ et $q < 0$. Dans ce cas (plus rare), l'inégalité est
inversée. Nous ne détaillons pas la démonstration de ce résultat.
$\endgroup$
$\begingroup$L'inégalité de Minkowski est l'inégalité suivante.
Résultat
Soit $p \in \mathbb{R}_0^+$ et soient $a_1,\ldots,a_n \in \mathbb{R}^+$ et $b_1,\ldots,b_n \in \mathbb{R}^+$.
- Si $p > 1$, on a
$$\left((a_1+b_1)^p + \ldots + (a_n+b_n)^p\right)^\frac{1}{p} \leq \left(a_1^p + \ldots + a_n^p \right)^\frac{1}{p} + \left(b_1^p + \ldots + b_n^p \right)^\frac{1}{p},$$ ce qui s'écrit aussi, à l'aide des signes somme,
$$\left(\sum_{i=1}^n (a_i + b_i)^p\right)^\frac{1}{p} \leq \left(\sum_{i=1}^na_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^nb_i^p\right)^{\frac{1}{p}}.$$
- Si $0 < p < 1$, on a au contraire
$$\left(\sum_{i=1}^n (a_i + b_i)^p\right)^\frac{1}{p} \geq \left(\sum_{i=1}^na_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^nb_i^p\right)^{\frac{1}{p}}.$$
De plus, on a l'égalité si et seulement si $a_i = 0$ pour tout $i \in \{1, \ldots, n\}$ ou s'il existe $\lambda \in \mathbb{R}$ tel que $b_i = \lambda a_i$ pour tout $i \in \{1, \ldots, n\}$.
Pour $p = 2$, on retrouve l'inégalité triangulaire (avec des variables positives).
Démonstration
Nous donnons la démonstration dans le cas où $p > 1$, l'autre cas se prouvant pareillement. Nous avons
$$\sum_{i=1}^n (a_i+b_i)^p = \sum_{i= 1}^n a_i (a_i+b_i)^{p-1} + \sum_{i=1}^n b_i (a_i+b_i)^{p-1}.$$ On applique alors l'inégalité de Hölder à chacune des deux sommes, avec les coefficients $p$ et $\frac{p}{p-1}$ (qui sont bien tels que $\frac{1}{p} + \frac{p-1}{p} = 1$). Cela nous donne
$$\sum_{i=1}^n (a_i+b_i)^p\leq \left( \sum_{i=1}^n a_i^p \right)^\frac{1}{p} \left( \sum_{i=1}^n (a_i+b_i)^p\right)^\frac{p-1}{p} + \left( \sum_{i=1}^n b_i^p \right)^\frac{1}{p} \left( \sum_{i=1}^n (a_i+b_i)^p\right)^\frac{p-1}{p}.$$ En divisant chaque membre par $\displaystyle\left( \sum_{i=1}^n (a_i+b_i)^p\right)^\frac{p-1}{p}$, on obtient exactement l'inégalité de Minkowski.
De plus, le cas d'égalité de l'inégalité de Hölder nous indique que l'égalité a ici lieu lorsque les vecteurs $(a_1^p, \ldots, a_n^p)$ et $\left((a_1+b_1)^p, \ldots, (a_n+b_n)^p\right)$ sont proportionnels et qu'il en est de même des vecteurs $(b_1^p, \ldots, b_n^p)$ et $\left((a_1+b_1)^p, \ldots, (a_n+b_n)^p\right)$. On vérifie aisément que cela n'arrive que lorsque les vecteurs $(a_1, \ldots, a_n)$ et $(b_1, \ldots, b_n)$ sont proportionnels.
$\endgroup$